3.3.1 \(\int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\) [201]

3.3.1.1 Optimal result
3.3.1.2 Mathematica [A] (verified)
3.3.1.3 Rubi [A] (verified)
3.3.1.4 Maple [B] (verified)
3.3.1.5 Fricas [B] (verification not implemented)
3.3.1.6 Sympy [F(-1)]
3.3.1.7 Maxima [F]
3.3.1.8 Giac [F(-2)]
3.3.1.9 Mupad [F(-1)]

3.3.1.1 Optimal result

Integrand size = 28, antiderivative size = 258 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {363 (-1)^{3/4} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{64 d}+\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d} \]

output
363/64*(-1)^(3/4)*a^(5/2)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I* 
a*tan(d*x+c))^(1/2))/d+(4+4*I)*a^(5/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1 
/2)/(a+I*a*tan(d*x+c))^(1/2))/d-149/64*I*a^2*tan(d*x+c)^(1/2)*(a+I*a*tan(d 
*x+c))^(1/2)/d+107/96*a^2*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)/d+17/2 
4*I*a^2*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(5/2)/d-1/4*a^2*(a+I*a*tan(d*x 
+c))^(1/2)*tan(d*x+c)^(7/2)/d
 
3.3.1.2 Mathematica [A] (verified)

Time = 6.49 (sec) , antiderivative size = 475, normalized size of antiderivative = 1.84 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {4 \sqrt {2} a^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {4 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {43 \sqrt [4]{-1} a^2 \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {a+i a \tan (c+d x)}}{64 d \sqrt {1+i \tan (c+d x)}}-\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {a^{3/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}} \]

input
Integrate[Tan[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2),x]
 
output
(4*Sqrt[2]*a^2*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c 
 + d*x]]]*Sqrt[I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]) - (4*a^(5/2)*ArcS 
inh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[I*a*Tan[ 
c + d*x]])/(d*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (43*(-1)^(1 
/4)*a^2*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[a + I*a*Tan[c + d*x]]) 
/(64*d*Sqrt[1 + I*Tan[c + d*x]]) - (((149*I)/64)*a^2*Sqrt[Tan[c + d*x]]*Sq 
rt[a + I*a*Tan[c + d*x]])/d + (107*a^2*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan 
[c + d*x]])/(96*d) + (((17*I)/24)*a^2*Tan[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[ 
c + d*x]])/d - (a^2*Tan[c + d*x]^(7/2)*Sqrt[a + I*a*Tan[c + d*x]])/(4*d) - 
 (a^(3/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[I*a*Tan[c + d*x]]*S 
qrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + d*x]])
 
3.3.1.3 Rubi [A] (verified)

Time = 1.67 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.09, number of steps used = 21, number of rules used = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.714, Rules used = {3042, 4039, 27, 3042, 4080, 27, 3042, 4080, 27, 3042, 4080, 27, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (c+d x)^{5/2} (a+i a \tan (c+d x))^{5/2}dx\)

\(\Big \downarrow \) 4039

\(\displaystyle \frac {1}{4} a \int \frac {1}{2} \tan ^{\frac {5}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a} (17 i \tan (c+d x) a+15 a)dx-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} a \int \tan ^{\frac {5}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a} (17 i \tan (c+d x) a+15 a)dx-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} a \int \tan (c+d x)^{5/2} \sqrt {i \tan (c+d x) a+a} (17 i \tan (c+d x) a+15 a)dx-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 4080

\(\displaystyle \frac {1}{8} a \left (\frac {\int -\frac {1}{2} \tan ^{\frac {3}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a} \left (85 i a^2-107 a^2 \tan (c+d x)\right )dx}{3 a}+\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\int \tan ^{\frac {3}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a} \left (85 i a^2-107 a^2 \tan (c+d x)\right )dx}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\int \tan (c+d x)^{3/2} \sqrt {i \tan (c+d x) a+a} \left (85 i a^2-107 a^2 \tan (c+d x)\right )dx}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 4080

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {\int \frac {3}{2} \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} \left (149 i \tan (c+d x) a^3+107 a^3\right )dx}{2 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} \left (149 i \tan (c+d x) a^3+107 a^3\right )dx}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} \left (149 i \tan (c+d x) a^3+107 a^3\right )dx}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 4080

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \left (\frac {\int -\frac {\sqrt {i \tan (c+d x) a+a} \left (149 i a^4-363 a^4 \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)}}dx}{a}+\frac {149 i a^3 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}\right )}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \left (\frac {149 i a^3 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (149 i a^4-363 a^4 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \left (\frac {149 i a^3 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (149 i a^4-363 a^4 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 4084

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \left (\frac {149 i a^3 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {512 i a^4 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-363 i a^3 \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \left (\frac {149 i a^3 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {512 i a^4 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-363 i a^3 \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \left (\frac {149 i a^3 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {1024 a^6 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-363 i a^3 \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \left (\frac {149 i a^3 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(512+512 i) a^{9/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-363 i a^3 \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 4082

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \left (\frac {149 i a^3 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(512+512 i) a^{9/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {363 i a^5 \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}}{2 a}\right )}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 65

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \left (\frac {149 i a^3 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(512+512 i) a^{9/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {726 i a^5 \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{2 a}\right )}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{8} a \left (\frac {17 i a \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {\frac {3 \left (\frac {149 i a^3 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {726 (-1)^{3/4} a^{9/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(512+512 i) a^{9/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a}\right )}{4 a}-\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}}{6 a}\right )-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}\)

input
Int[Tan[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2),x]
 
output
-1/4*(a^2*Tan[c + d*x]^(7/2)*Sqrt[a + I*a*Tan[c + d*x]])/d + (a*((((17*I)/ 
3)*a*Tan[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]])/d - ((-107*a^2*Tan[c + 
 d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(2*d) + (3*(-1/2*((726*(-1)^(3/4)* 
a^(9/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c 
+ d*x]]])/d + ((512 + 512*I)*a^(9/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + 
 d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d)/a + ((149*I)*a^3*Sqrt[Tan[c + d*x] 
]*Sqrt[a + I*a*Tan[c + d*x]])/d))/(4*a))/(6*a)))/8
 

3.3.1.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4039
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + 
 d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Simp[a/(d*(m + n - 1)) 
Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + 
a*d*(m + 2*n) + (a*c*(m - 2) + b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x 
] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] 
 && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4080
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] + Simp[ 
1/(a*(m + n))   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Sim 
p[a*A*c*(m + n) - B*(b*c*m + a*d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*T 
an[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 
3.3.1.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 491 vs. \(2 (204 ) = 408\).

Time = 1.00 (sec) , antiderivative size = 492, normalized size of antiderivative = 1.91

method result size
derivativedivides \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (96 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )-272 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+384 i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +384 \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +1089 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a +894 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-428 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+1536 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{384 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(492\)
default \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (96 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )-272 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+384 i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +384 \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +1089 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a +894 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-428 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+1536 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{384 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(492\)

input
int(tan(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/384/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(96*(a*tan(d*x+c) 
*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3-272*I*tan(d 
*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+384 
*I*2^(1/2)*(I*a)^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d 
*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+384*2^(1/2)*(I*a)^(1/2 
)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a 
*tan(d*x+c))/(tan(d*x+c)+I))*a+1089*I*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c 
)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a+89 
4*I*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-428*(-I 
*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+153 
6*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^( 
1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2) 
/(I*a)^(1/2)/(-I*a)^(1/2)
 
3.3.1.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 769 vs. \(2 (192) = 384\).

Time = 0.27 (sec) , antiderivative size = 769, normalized size of antiderivative = 2.98 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Too large to display} \]

input
integrate(tan(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")
 
output
1/192*(sqrt(2)*(-845*I*a^2*e^(7*I*d*x + 7*I*c) - 1275*I*a^2*e^(5*I*d*x + 5 
*I*c) - 1135*I*a^2*e^(3*I*d*x + 3*I*c) - 321*I*a^2*e^(I*d*x + I*c))*sqrt(a 
/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x 
+ 2*I*c) + 1)) + 96*sqrt(131769/4096*I*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) + 3 
*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) + d)*log(1/363*(363*sqrt( 
2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt( 
(-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + 128*I*sqrt(13176 
9/4096*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2) - 96*sqrt(13176 
9/4096*I*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e 
^(2*I*d*x + 2*I*c) + d)*log(1/363*(363*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + 
a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/( 
e^(2*I*d*x + 2*I*c) + 1)) - 128*I*sqrt(131769/4096*I*a^5/d^2)*d*e^(I*d*x + 
 I*c))*e^(-I*d*x - I*c)/a^2) - 96*sqrt(32*I*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c 
) + 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(4*sqrt 
(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt 
((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + I*sqrt(32*I*a^5 
/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2) + 96*sqrt(32*I*a^5/d^2)*(d* 
e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) + 
d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 
 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + ...
 
3.3.1.6 Sympy [F(-1)]

Timed out. \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(tan(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**(5/2),x)
 
output
Timed out
 
3.3.1.7 Maxima [F]

\[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\int { {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \tan \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

input
integrate(tan(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate((I*a*tan(d*x + c) + a)^(5/2)*tan(d*x + c)^(5/2), x)
 
3.3.1.8 Giac [F(-2)]

Exception generated. \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Exception raised: TypeError} \]

input
integrate(tan(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:The choice was done assuming 0=[0]W 
arning, replacing 0 by -99, a substitution variable should perhaps be purg 
ed.Warnin
 
3.3.1.9 Mupad [F(-1)]

Timed out. \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\int {\mathrm {tan}\left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \]

input
int(tan(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(5/2),x)
 
output
int(tan(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(5/2), x)